A Tale of Two Testbeds

A Comparat

Detection

ve Stuc

v of Attack

echnig

desin CPS

Surabhi Athalye, Chuadhry Mujeeb Ahmed, and Jianying Zhou

Singapore University of Technology and Design



Contents

* Introduction

* Research Approach

* Testbeds

* System Modelling

e Attack Detection Framework
e Attack Detectors

* Threat Model

e Detector Performance

* Concluding Comments




Introduction: Cyber-physical Systems

* Interconnected components:
* Programmable Logic Controllers (PLCs)
" Sensors, actuators
» Supervisory Control and Data Acquisition (SCADA) workstation
* Human Machine Interface (HMI)
= Communication network

* Exposure to malicious entities.



Motivation
To exhaustively test and compare attack detection techniques
for CPS on different testbeds.

Detection Techniques

Statistical Change Monitoring Device Fingerprinting

e Cumulative Sum (CUSUM) Detector * NoisePrint
* Bad-data Detector
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Testbeds: SWaT




Testbeds: SWaT

PLCS

Reverse Osmosis
P5

MV302 PLC6 -
DPIT301 P302 Trs‘g;
LIT301 I Backwash
MV201 FIT301 ' P6
MV101, FIT101 P101 P301 :
| | |
! PLC1 PLC2 ! pLC3 v PLC4
1 | . 1
—y Ra‘l"r’]g\lﬁter |V, nggi‘r']‘;a' . AN Ultrafiltration Dechlorination ~ —
Water from P1 P2 P3 P4
external
source S = {LIT101, FIT101} sS={ S = {LIT301, FIT301, S = {LIT401, FIT401}
DPIT301})
A= {MV101, P101} A= {MV201} A = {MV201, MV302, A = {P401}
P301}
Storage Tanks: T101 [No storage] T301 T401

S ={FIT501, FIT502}

A = {MV501, P501}

T501, TS502

From
T501

Architecture of the SWaT testbed




Testbeds: VWADI




Testbeds: VWWADI
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System Modelling

* Actuators as control input, sensors as control output

* System model:
Xk+1 = Axk + Bu; + vy,

Yk = Cxg+ M

* The state-space matrices A, B and C capture the system dynamics and
can be used to find a specific system state given an initial state.

* The sensor and process noise vectors are represented by 1, and v,
respectively.



System Modelling

* Model validation: using Root Mean Square Error (RMSE)
N )2
EMSE = ¢ 2iz1 (vi = i)

N
Sensor FIT101 | LIT101 | LIT301 | FIT301 | LIT401 | FIT401
RMSE 0.0363 | 0.2867 | 0.2561 | 0.0200 | 0.2267 | 0.0014

(1-RMSE)*100% | 96.3670 | 71.3273 | 74.3869 | 98.0032 | 77.3296 | 99.8593

Table |: Validating SWaT model obtained from sub-space system identification

* Accuracy as high as 70% is considered sufficiently precise”.

* Sensor fault detection and isolation for wind turbines based on subspace identification and kalman filter techniques. International Journal of Adaptive Control and Signal Processing, 2010
* Model-based attack detection scheme for smart water distribution networks. ASIACCS’ |7



Performance under Normal Operation
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Attack Detection Framework

|) Estimation of the sensor output using the system model

2) Examination of the residual between the actual and estimated
values and verifying the source of the sensor readings.

Detector




Attack Detection Framework

* Residual at time instance k:

Ik = Yk = Vi
* Under normal mode:  E|[r,] =0
* Under attack: Elr,]#0



Attack Detectors: CUSUM

CUSUM: S,;=0, S5, =0, ki =0, k; =0,

[ ot - = o ot +
Sﬁ.i = maX(0:§§—1.i~t rii—Ti = Ki), IESk—l.i 5+Ti )
S/{.i=0 and ki =k[' +1, ifS/\’—l.i> Ti .

A

| Ski=min(0, 8,y +r =T+ 1K), i S ;27
\Sk.i=0 and k,‘ =ki +1, lfS/\,_l.l-<T,‘ .

Design parameters: bias x; > 0 and threshold 7; > 0.
Output: alarm(s) = k; +k; .

* CUSUM values S,Ii and S, ; accumulate the distance measure 1y ; (residual of it" sensor)
over time to measure how far are the values of the residual from the target mean (T;).

* Alarm is raised when the accumulation at any time instance k becomes greater or lesser
than the chosen threshold 7;.



Attack Detectors: Bad-data Detector

Bad-Data Procedure:
If |rei|>0;, ki=k, i€7.

Design parameter: threshold «; > 0.
Output: alarm time(s) k;.

* Alarm is triggered if the distance measure, |1y ;|, for the it" sensor exceeds the threshold
a; at the time instance k.



Attack Detectors: NoisePrint

* When the system is in steady state, the residual vector obtained from
the system model is a function of sensor and process noise™.

* Using system state estimation, it is possible to extract the sensor and
process noise characteristics of the given industrial control system.

* Machine learning is applied on the residual vectors to fingerprint the
given sensor and process.
* Detector design:
= Residual collection

* Data chunking
® Feature extraction

** NoisePrint: Attack Detection Using Sensor and Process Noise Fingerprint in Cyber Physical Systems. ASIACCS 'I8



Threat Model

Attack classification based on execution

Single-point Attack Multi-point Attack Stealthy Attack

Targets a single point in Multiple simultaneous Minute alterations to
the system target points sensor data

ke 7




Data Injection Attacks

Bias Injection Attack Stealthy Attack
* Goal is to deceive the control system by * The attack vector ¢, chosen such that it
sending incorrect sensor readings. stays inconspicuous.
* Sensor reading is biased by a value of §,. * The residual does not change noticeably or

* Sensor value under attack: y, = y; + §; exceed the thresholds of the detectors.



Attack Simulations

Attack ID Description (Initial State / Attack State)
Stage 1
Atk-1-s LITI01 = 659mm / change level +1mm/sec
Atk-2-s LIT101 = 659mm/ LIT101 = 850mm
Atk-3-s LIT101 = 659mm/ LIT101 = 210mm
Atk-4-s LIT101 = 679mm/ LIT101 = 700mm
Atk-5-s LITI01 = 1029mm / LIT101 = 700mm
Atk-6-s LIT101 =789mm/ LIT101 = 789mm
Atk-7-s LIT101 =784mm/ LIT101 = 600mm
Stage 3
Atk-8-s L <LIT301 < H/LIT301 = HH+
Atk-9-s L < LIT301 < H/ change level -1mm/sec
Atk-10-s L < LIT301 < H/ change level -0.5mm/sec
Atk-11-s FIT301 = 0 m’ /hr / FIT301 = 2 m’ [ hr
Atk-12-s L < LIT301 < H/ water leakage attack
Stage 4
Atk-13-s FIT401 = 0.48m° /hr / FIT401 = Om’® [ hr
Atk-14-s |LIT401 < 1000mm, P401 = ON / LIT401 = 1000mm and P401 = ON
Atk-15-s | L < LIT401 < H, P301 = ON/ LIT401 = 600mm and P301 = ON
Atk-16-s L <LIT401 <H/LIT401 <L
Atk-17-s LIT401 = 1005mm / LIT401 = 1005mm

Table 2: List of attacks simulated on SWaT

— Stealthy attack

— Bias injection attack



Performance Metrics

* True Positive Rate (TPR)™ — the number of times the method
correctly raises alarms over the duration of the attack.

* False Positive Rate (FPR) or False Alarm Rate (FAR) — the number of
times the method incorrectly raises alarms in the absence of any

attack.

* Time Taken for Detection (TTD) — the time taken by the procedure
to raise an alarm in the event of an attack.

1k False Negative Rate (FNR) is an alternate way of expressing TPR: FNR = 100 % — TPR



Performance under Normal Operation

Sensor FIT101(LIT101|{FIT301|LIT301|FIT401|LIT401
CUSUM Detector
Threshold 0.014913.116810.2209(0.5529 [{0.0156|0.5674
K 0.007410.3117]0.0276(0.1382 {0.0028 | 0.1135
FAR 5.54% | 5.19% | 5.34% | 4.65% | 4.02% | 4.03%
Bad Data Detector
Threshold 0.0205(1.4100(0.1184 {0.4887(0.0108 | 0.4178
FAR 4.29% | 5.32% | 4.84% | 4.56% | 5.41% | 5.42%
NoisePrint
FAR 0% |129% | 83% |244% | 0% 0%

Table 3: False positives raised by the detectors under normal operation in SWaT




Performance under Normal Operation
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Statistical attack detection methods applied on the residual for level sensor
(LIT-101) estimates from SWaT under normal operation



Performance under Attack

Attack NoisePrint CUSUM Bad Data
TPR | FNR |TTD (s)] TPR | FNR |TTD (s)] TPR | FNR |TTD (s)
Single Point A ttacks
Atk-8-s [85.72%|14.28%| 121.22 |17.46%|82.54%| 2 16.75%83.25%| 2
Atk-9-s [14.50%85.50%| 179 |88.15%|(11.85%| 2 |93.18%| 6.82% 2
Atk-10-5/80.64%(19.35%| 130.09 [56.30%\43.70%| S5  |58.48%|41.52%| 3
Atk-11-5|87.50%|12.50%| 89.59 | 100% | 0% 1 100% | 0% 1
Atk-12-5/163.63%|36.37%| 117.83 195.42%)| 4.58% 6 196.64%| 3.36% 6
Atk-1-s [88.88%|11.12%| 32.48 |91.16%| 8.83% 2 |91.34%)| 8.66% 1
Atk-2-s [67.56%)|32.44%| 46.90 |85.08% 14.92% 1 78.02%)21.98% 1
Atk-3-5 90.91%) 9.09% | 35.25 [98.92%| 1.08% 1 99.08%)| 0.92% 1
Atk-7-s |88.24%|11.76%| 57.35 |77.58%|22.42% 1 60.62%|39.38% 1
Atk-13-s| 55% | 45% | 44.43 |32.82%|67.18%| 2 13.94%86.06%| 2
Atk-16-5(86.21%|13.79%| 56.26 | 6.21% |93.79% 1 6.32% (93.68% 1
Multi-Point Attacks
Atk-14-5(81.82%|18.18%| 125.59 [16.32%83.68% 1 6.76% |93.24% 1
Atk-15-s|77.78%22.22%| 105.3 |54.68%\45.32%| 2 [99.64%)| 0.36% 2
Atk-4-s 94.73%) 5.26% | 35.59 [99.66%| 0.34% 1 100% | 0% 1
Atk-5-5 [90.47%) 9.53% | 44.50 [99.68%| 0.32% 1 100% | 0% 1
Stealthy Attacks
Atk-17-s| 80% | 20% | 67.03 | 0% | 100% | ND 0% | 100% | ND
Atk-6-s | 75% | 25% |174.84| 0% | 100% | ND 0% | 100% | ND

Table 4: Attack Detection Performance on SWaT testbed




Performance under Attack
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Statistical attack detection methods applied on the residual for level sensor
(LIT-101) estimates from SWaT under stealthy attack



Performance Remarks (Attack Detection)

Statistical Detectors

e Successful detection of basic attacks, such as
bias injections.

* Faster detection time.

* Fail under stealthy attacks.

NoisePrint

Better overall accuracy.

Able to detect stealthy attacks, since replication
of process and sensor noise can be difficult.
Slower speed of detection.



General Comments/Challenges

* Practicality of model-based approach:

" Testbeds used are small-scale and obtaining complete system models for them
was a feasible task.

= Larger industrial plants could be divided into several sub-systems (based on
the processes taking place) and have multiple models corresponding for each.

* Obtaining a normal reference system model for the plants and
sensors sensitive to environmental disturbances (e.g., for the WADI
testbed) is a non-trivial task:

* Noise from the environmental disturbances on the system’s processes causes
unpredictable deviations from its modelled behavior.



General Comments/Challenges

* Sensor faults under normal operation: hindered the creation of useful
system models.

* Data availability and reliability:

» Dataset for model creation obtained after the plants were run continuously
under normal operating conditions.

* However, unexpected results were obtained when the system models were
tested when the plants were not running.



Conclusions

It is deduced that bias injection attacks on sensors that are quite similar

to faults can be easily detected using statistical techniques like Bad-Data
and CUSUM detectors.

However, it is observed that advanced stealthy attacks require more
sophisticated detection methods, like NoisePrint.

While detection methods must be able to demonstrate accuracy, their
attack detection speed is also a crucial metric for critical CPSs.
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