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Key Questions / Challenges for RITICS Phase 1 
(2014-2018)

Do we understand the harm threats pose to 
our ICS systems and business?

Can we confidently articulate these threats 
as business risk?

What could be novel effective and efficient 
interventions? 



RITICS Phase 1 Projects

• RITICS (Hankin, Chana, Imperial 
College London)

• MUMBA (Rashid, Lancaster/Bristol)
• CEDRICS (Bloomfield, Popov, City)
• SCEPTICS (Easton, Chothia, 

Birmingham)
• CAPRICA (Sezer, Queen’s University 

Belfast)



Impact of Phase 1

v Creation of a new research community
v Contribution to new Cyber Security Strategy for UK railways.
v Tools for building models of complex cyber physical 

systems.
v Testbeds.
v A serious game for studying security decisions.
v Secure implementation of gateway module compatible with 

IEC  and IEEE standards.
v Contribution to European work on certification of ICS 

components.
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Teaming with the University of Cyprus





Challenges to Trustworthiness

• Cyber Security and Computer Science 
Education

• Inter-connectedness and inter-
dependencies

• Digitalisation and homogeneity
• Reliance on AI/ML 





Four contributions:
• Real-time CPS Monitoring

• Measuring Cyber-physical security

• Software Diversity

• AI and Intrusion Detection



CPS-MT

• Proof-of-concept real-time monitoring 
tool.

• Focus on security research
• Monitored elements publish status/data 

via in-memory database
• CPS-MT subscribes to data base
• Deployment in water treatment study









META4ICS

• Proof-of-concept tool to identify critical 
cyber-physical components.

• AND/OR (hyper-)graph of 
dependencies.

• MAX-SAT solvers used in calculating 
critical components.

• Models physical protections as well as 
cyber aspects.









Software Diversity

• Software diversity in networks as graph 
colouring problem

• Similar products facilitate spread of 
malware

• Optimal allocation across multiple 
products (respecting constraints) to 
slow spread



Approach

Ø Metric vulnerability similarity of products computed from a statistical study of 
CVE/NVD. 

Ø Model the multi-labelled network by a discrete Markov Random Field (MRF).

Ø Optimal assignment of products by the sequential tree-reweighted message 
passing (TRW-S) algorithm – assign products to reduce similarity between 
neighbouring nodes whilst obeying any constraints.

Ø The result evaluated in a NetLogo simulation in terms of Mean Time To 
Compromise. 

Ø Scalability analysis of our optimisation method against 
Ø Large-scale networks with up to 10,000 hosts. 
Ø High-density networks with up to 50 degrees (# edges) per host. 
Ø High-complexity networks with up to 30 products/services per host. 
Ø Most heavy cases converged from a couple of seconds to ~3 minutes. 
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Intrusion Detection

• Deep learning to spot anomalous 
network traffic

• Evasion attacks
• Defence against adversaries



Anomaly Detection
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Evasion Attacks

Szegedy, Christian, et al. "Intriguing properties of neural networks." (2013).

Originally discovered by researchers 
when trying to better interpret neural 
networks.



Adversarial ML
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Defences

• Many defences proposed, no clear silver bullet:
• Adversarial Training
• Defensive Distillation – use information from training 

points to make the classifier model more robust to 
perturbations

• Feature Squeezing – reduce degrees of freedom in 
feature input spaces

• Neural Network Uncertainty – confidence and 
uncertainty for inputs

• And many more…



Deep Latent Defence

• Feed-forward Nets
• Lower dimensional latent space created 

by encoder.
• Classes clustered.
• K-nn algorithm to compare training data 

embeddings to test-time samples.
• Combined with adversarial training 

proves challenging for adversary.

Adversarial Machine learning Beyond the Image Domain, Zizzo, Hankin, Maffeis, Jones, DAC 2019



The RITICS Programme
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NIS Directive

How many shades of NIS: Understanding 
Organisational Cybersecurity and Sectoral 
Differences - Bristol

Effective Solutions for the NIS Directive: 
Supply Chain Requirements for Third 
Party Devices - Birmingham

Establishing a Scientific Baseline for 
Measuring the Impact of the NIS Directive 
on Supply Chain Resilience - Glasgow



Second Call

AIR4ICS: Agile Incident Response For Industrial Control 
Systems – DMU

Cloud-enabled Operation, Security Monitoring, and 
Forensics (COSMIC) – QUB

Developing Pedagogy to Optimise Forensic Training in 
Safety-Related Industrial Control Systems (ICS) –
Glasgow

Interconnected safe and secure systems (IS3) - City



Thank you

ritics.org
c.hankin@imperial.ac.uk


